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SECTION 7

VACUUM ENERGY STORAGE

7.1 THEORETICAL PROGRAM

Theoretical consideration of high-energy electron beam injection and switching

for the DNA Small Toroidal Pulseline (STP) have been actively pursued during the pastyear.

In addition, investigation of the equilibrium of an unneutralized electron beam using a
fully relativistic rigid rotor model as well as the development of a set of relativistic
fluid equations for further equilibrium and stability calculations are reported. Fully
relativistic equilibria are required to study the entire equilibrium parameter space,
including the regime where the perpendicular motion is relativistic. In this domain

the theoretical bounds on stored cha'rge and y/y consistent with equilibrium at a given
value of magnetic guide field can be properly explored. To extend our ability to cal-
culate equilibria and stability in a realistic toroidal geometry requires the development
of a set of fluid equations for non-neutral, relativistic plasma. A two-mass realization
of such a set of equations is presented in this report.

In addition to the self-consistent equilibrium calculations, a computer code has
been developed to facilitate the design of an energetic electron injector. This code
calculates the trajectory of a test electron from the fully-relativistic equations of mo-
tion in toroidal geometry. The self-consistent equilibrium fields of a core of back-
ground electrons are included, as well as a toroidal magnetic guide field, a vertical
magnetic field and a diverter field. This code permits a study of the electron dynamics
in the torus. The importance of vertical field for canceling the electron drifts due to
toroidal curvature and grad B will be reported.

Finally, a means of switching the torus through the use of vertical magnetic
fields will be presented. A design for achieving the required switching time will be
shown in detail. '
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7.1.1 High-Energy Electron Injection for STP

A relativistic electrostatic torus can store ¥, times more charge or -yoz times
more field energy than is possible is a non-relativistic system of the same dimensions
for a given magnetic field strength. To realize these advantages, however, the elec-
trons must be injected with relativistic energy. The fundamental limit on stored
charge derives from the condition for crossed-field electron drift to be energetically

possible. In the presence of the space-charge electrical field, Er’ the self-magnetic

field, B o° and the toroidal guide field, B , the electrons execute a poloidal drift with
10)
velocity v 0 given by
- B E
Vo e E'r 8o Sl r
& o B % 2
() s Bo
2 -1/2

where Bg = BoEr and o a- Ro ) . The total kinetic energy of the electron,

including the poloidal drift, is given by

_ 2 2,-1/2 _
Yo LETE —(vg/c)] =

o
of the electron is infinite since this corresponds to v'g = -yov o = c in the reference

from which we obtain the condition -yova /e<1l. For y v 9/c = 1, the kinetic energy

frame where the axial beam velocity is zero.

The energy for the drift motion is drawn from the stored field energy and pre-
sents an ""energy penalty'' when yovn /c is near unity. The fractional energy,
(v - yo)/yo, is plotted in Figure 7-~1 as a function of WA q/c. From the figure we
see that for Yoy n/c < 1/2 when the last electron is injected at the torus wall we ob-
tain conservative design criterion for a relativistic injection system. As the electrons
are magnetically compressed away from the wall, the value of -vov R/c decreases lin-

early with radius. The theoretical maximum for S G/c can be determined by




05 —

Figure 7-1.
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Fractional Kinetic Energy vs. yove/c.




studying fully-relativistic beam equilibria. Such studies have been made and will be
discussed in a separate section of this report.
If we denote the maximum allowed values of yov Q/c by », we obtain an ex-

pression for the maximum stored charge in the device. We write

and use Er = —2Nbe/b with Q = 2#R Nbe and r = b for the minor radius of the torus.

The resulting expression for the maximum stored charge is

]

Q nmR b -yoBO

= 0.424 n'yoB (kG) millicoulombs.
©

The second line here uses R = 50 cm and b = 8.1 c¢m, which are typical parameters
for the STP. This expression is plotted in Figure 7-2 for n»= 0.5 and B“o = Bo
sin (m/27). On this figure we observe that for Bo = 10 kG we can inject up to 2.1 mC
with -yo =1, provided we inject electrons all the way to peak field. To compress the
electrons away from the wall, we must terminate the injection prior to the time of peak
field, with a corresponding reduction in injected charge. By using a relativistic in-
jector, ¥, * 1, we increase the allowed charge by the factor ¥

For a given value of injected charge, Q, the energy stored in the fields of the

electron beam is given by

2
2
W, = S 1+ + b
e e ( Bo ) [1/4 + ¢n b/a]
where a = the final beam radius. We assume Q is the maximum allowed, i.e.,
Q=nn7R b-yo:BO sin (ntt/Z-r), where t; is the time when the final electron is injected.

The final beam radius, a, is then given by

10




0.25

0.20

0.15

Q (mc)
Yo Bo (kG)

0.10

0.05

Figure 7~2. Maximum Stored Charge ys. Time for n = 0.5.

1
i
|
i

TIPS




—

2 2
= b i
a Bo Bo sin ('rrtf/z-r)

|
i1
i

p [ 1 ]
3 a sin(m;f/z-r) :

Combining these results, we obtain an expression for the final stored field energy in

terms of the injection termination time t £ !
|

2 |
n 2 2 2.3 3 :
e 1+ r- [F
wf = ( 50)wa 'yoBo sin (-rrtt/2'r)h1 21,nsin(-rrtf/21')] .
or
W,_ = 257.65 e (kG)sin2 m /271) [1-2¢nsin (mt_/27) ] Joules 4
¢ -65n y B, (mt/27) [ sin (/2 7) e

for R=50 cm, b=8.1 cm and Ri ~ 1. This expression is plotted in Figure 7-3 for
n=0.5. We see that the stored energy increases with tf as we would expect.
We now turn to a calculation of the power density available from switching such
a device. A mechanism for switching the beam in one transit time is described in de-
tail in a later section of this report. If the final field energy, Wf, calculated above
is released in one transit time, 2mR/c, the power delivered per unit area is given by
Wf 'F

P = ————2_ .
(2mR/c) (ma’) -

Using earlier results, this expression becomes,

2

2 2.2
-}1‘-5—:— (1+6)y_B. sin(mt/27) [1-24nsin (nt/27) ] 1

el
I

1.2 x10° nZVzBi (kG) sin (7t /27) [1-2£nsin (m/27) ]Watts/cmz.

i 12
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This expression is also plotted on Figure 7-3 for i = 0.5, and the result shows a peak
in output power density when injection is terminated at tt/ 7~ 0.4. The peak occurs
because earlier terminration of injection leads to a more tightly-pinched beam, but

also results in less stored energv. We should emphasize that these results are valid

as long as the drift limit, ¥y p/c < 7, is the most stringent limit on charge injection. {
We now examine Figurés 7-2 and 7-3 to determine a set of design parameters '
for a relativistic STP. Assume that we terminate injection at the maximum output
power point, tf/r ~ 0.4, and use B0 = 10 kG (the STP field coils can reach 12-15 kG).
The non-relativistic thermionic injector is then limited to 1.2 mC stored charge cor-
responding to 4.5 kJ stored field energy. With a relativistic injector consisting of a 1
low~current beam of 1 MeV electrons ( % 3), the stored charge will be limited to E
3.6 mC and 40 kJ will be stored in the self-fields of the beam. The final beam radius l
will be 6.2 cm. i
The remainder of this section will present some simple estimates of the type ‘
of injection system required. Detailed studies of the relativistic injector are under it
way to examine the electron trajectories for various injector geometries using a
single-particle model for the injected beam, but including the self-fields of electrons
already in the torus. For a low-current injector, such a model yields a reliable cal-
culation of the injected electron trajectories. The estimates to be presented below,
therefore, should be regarded as an order-of-magnitude survey of the injector require-

ments.

Consider an injected beam of 1 MeV electrons with current i and pulse duration
r . The beam radius is assumed to be approximately 1 cm. The inductance of such ‘
a beam of length 27 R is of order L ~ 1 yH. Since the beam transit time around the !

torus is 2#R/c ~ 10 ns, the rate at which the total current I within the torus increases ;

is approximately

i

dar —
dt — 2aR/c °




Clearly, a multi-tum injection is mandatory. The induced emf, L(dI/dt), associated
with injection of the beam must be balanced by the transformer. Without a transformer,
the induced emf would stop the beam before injection could be completed. If the injec-
tion current, i, is too large, the induced emf will not be completely cancelled by the
transformer, and the beam would be degraded in energy during injection. The STP

transformer can produce \'l ~ 3 kV around the torus. We therefore have

a g , :
LS - o0y LAmRS) 403 voits
- = -5 -
10 sec
or

i ~ 30 Amps

for the average injection current. From our earlier considerations, we wish to in-

ject Q ~ 3.6 mC into the torus. Since this charge is provided by the injector, we must

require

Q=1ir
p

which determines the injection pulse duration,

T ~ 120 ps.
p = us

The magnetic field typically rises in 7 ~ 3.5 ms, and for injection to termin-
ate at tt/T ~ 0.4, we have tf ~ 1.4 ms, which allows ample room for an injection win-
dow. A lower injection current with a longer pulse duration may be preferable for
obtaining uniformity in the final beam, and would be compatible with the transformer.

7.1.2 Single-Particle Orbit Calculations

A computer code has been developed to facilitate the design of a relativistic
injection system for an electrostatic torus. The trajectory of a test electron is com-
puted using the fully relativistic equations of motion in toroidal geometry. A thermionic
(or other) injector is assumed to have supplied ;el core of charge within the torus at the




arbitrary:

1.

4.

5.

time the relativistic electron is injected. This core provides a rotational transform
in the particle orbits to cancel the vertical drift due to the centrifugal and grad B
forces. Vertical magnetic field can also be utilized to cancel the vertical drifts,
thereby eliminating the need for rotational transform. The fields due to the core
electrons are computed from self-consistent equilibrium solutions. The electrostatic
and self-magnetic fields of the core electrons, including the diamagnetic contribution
to the toroidal field are all present in the equations of motion. In addition, the code
provides for a loop diverter field to distort the magnetic field lines in the vicinity of
the injector, and a vertical field to adjust the equilibrium location.

The following parameters are input variables in the code, and are therefore

Test Electron
initial position of the test electron
initial energy of the test electron

direction of the initial momentum vector of the test electron

Electron Cloud
quantity of previously injected charge
radius of the electron cloud

relativistic factor ('yo) of the electron cloud

Geometry of the Toroidal Vessel

major radius and minor radius

Diverter Loop Quantities

current in loop
radius of loop
location of loop center

direction of loop axis

Guide Field, B_ sin (m/27)

Bo and T

16




6. Initial and Final Time in Computer Run and Time Step for Integration 1

of Equations of Motion

7. Vertical Field, Bv

Coordinates

Figure 7-4 shows the toroidal coordinate system as well as local and global
cartesian coordinates. The problem is solved in the global cartesian system in order |
to facilitate the inclusion of the diverter field, which is non-toroidal. The transforma-

tion from toroidal coordinates (r, 8, ) to global cartesian coordinates (x, y, z) is

£ |
given by
X = Rcoso
y = -Rsinp :
z = r sin 6. .
i
where R = Ro + r cos . The inverse transformation is 1
2 2
R = Jx +y t
i
tan o = -y/x
r= /R-R) +z
tan 6 = z/@®R - R ). 7

The unit vectors in the global cartesian system are

© =% cospcosp -2 _sin gcos o-€ sin e
X r 6 %)

© = £ cos@sinp+@ singsin -2 coso
y r 6 0o}
A A Z oA
€ = ¢ sinf +e¢_cosph.
. " 6 0 6
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Figure 7-4.




3, Given any vector, A = @r Ar s 66 A9+ @0 A , in toroidal coordinates, the components
(6]

in global cartesian coordinates are

= 8 I = - - i ;
Ax ex A (Ar cos 6 AG sin @) cos ¢ Ao sin ¢ ;
A =€ -A=-A cosp-(A cos@-A_sing)sin I
Y y & n o-@A, 6 ) sin o i
A =€ - A=A sing+A _cos#. |’
z Z = r 6 {
b iﬁ
Fields
The code is written entirely in the cgs-Gaussian electrostatic system of units. %
The self fields of the electron cloud are
r/a r =a
i e
3 r nR a !
° 1
a/r asrs=sb :
= E . ;
B 0 B - {
E The toroidal guide field with the diamagnetic contribution of the electron cloud is given "
3
4 Ny
3
F 2 R
&5 2
; Bosin(frt/z-r) 1- - 3 (l1-r/a’) 'EO r =a
TR a
B o
{6o]
Ro
T B0 sin (wt/271) asr=shb

In addition, there is an inductive electric field, E 0’ due to the time dependence of

B
[7s]
3B nB
B oa ek el g o 9} cosfLt
0 2c 2¢ 27 27/ °
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|
|
|
|
B

Diverter Loop
The diverter is modeled as a single-turn filamentary loop. Later versions

of the code will stack such loops into a finite-length solenoidal field. The diverter
field is calculated in the coordinate system shown in Figure 7-5. The vector [ de-
fines the axis of the loop as well as the direction of current flow in the loop (by the
righthand rule). The loop radius, a‘. and the current in the loop, I‘ , are input
variables in the code. In addition, we specify the location of the center of the loop
(r n 62’ OL) and the coordinates of an arbitrary point on the positive half of the loop
axis (ra.x’ 6 ax’ (oax). The point at which we wish to know the field is (r, 6, o).
Using the transformation equations, we find the coordinates of these points in the

global cartesian system
(rl,’ el’ (Dl) - (xl.’ yl,’ zf.)
(raxy eax! (Dax) b (xax’ yaxv za.x)

(r, 6, 0) - X, ¥, 2)
We define

l’ yax -yl-’ zax"zt)

e
]

(x - X
ax

p=&-%X,¥-y,,2-2)

where ) is the vector pointing from the center of the loop to the field point. The loop

field is then given by
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where K(k) and E(k) are the complete elliptic integrals,

v/2 do

Kk = s s o |
1-k sin o« !

/2 |

Ek) = 3 =
A da V1-k"sin” «a -

with :
2 43201 13
k = 5
+ + |
(al pJ.) D“
and
=L.p/¢
Il ot = |
= 2_ 2
P, PP, :

The loop field in the global cartesian coordinate system is then

Eloop G B“ E/c & BJ.. EJ./pL

where

o, = txpx L.
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Equations of Motion

The code solves the fully relativistic equations of motion,

ax P

= = g

. / 2, 22
mJ1+p /me

by a numerical integration technique similar to the classical Runge~Kutta procedure.

Output of Code

The code makes two plots, a projection of the electron trajectory in the x-y
plane and a projection in the local x-z plane. These two plots provide the complete
shape of the orbit. In addition, the code prints out the position and momentum com-
ponents of the test electron at each time step, thereby allowing the time history of the
particle to be followed.

We have run a number of simple problems in order to check the accuracy of
the code. In one case, the calculation time step was reduced from 10“10 sec to
10-11 sec with no change in the output. In another example, we reversed the sign of
the toroidal guide field and caused the toroidal curvature and grad B drifts to change
direction.

One set of test calculations were of pure toroidal drifts. The torus was
emptied, Q = 0, and the test electron launched in the toroidal direction with no initial
momentum in either the radial or the azimuthal directions. The diverter loop was
not activated, Iz =~ 0. In these calculations we expect the electron to execute an up-
ward vertical drift with speed

2
p A Bo me

v =

Z eR B
o o

YL NeT




The results of these calculations are shown in Figures 7-6 through 7-8. In each

case, the distance to wall is 7.746 cm, since the electron begins 2 cm off axis. From
the known time of flight of the electron to the wall, we can calculate the electron drift
speed, which we compare with the theoretical value. The following table summarizes

the results.

V (Theoretical) V (Computer)

Figure v _I}o (kG) E _(cm/ns) (cm/ns)
7-6 2 5 1.382 1.383
7-7 3 5 2.456 2.421
7-8 3 10 1,228 1. 229

The small differences between the computed and theoretical values of ¥, are entirely
consistent with the finite Larmor radius effects which are included in the code. The
largest deviation, Figure 7~7, corresponds to the largest Larmor radius.

In the next set of test calculations, we constructed HIPAC equilibria. The test
electron started at rest, 2 ecm off the minor axis. The torus contained a finite amount

of charge, Q, and the azimuthal electron drift was expected with speed

vV = gr
9 w
b Qc
w == .
2
mR a B
0 (]

Figure 7-9 shows the result for Q = 10 yC and ¥y =1, 0001 for the electron cloud.
The test electron executed a perfect azimuthal drift. The calculated precession half-
period, 7/, was 9.75 ns, and the test electron required 9.6 ns to precess half way
around the minor axis. The calculated Larmor period and Larmor radius also agreed
with the computer results.

Figure 7-10 shows the same calculation with Q = 100 uC. The orbits are larger

and the precession faster, as expected. Both Figures 7-9 and 7-10 represent 10 ns of

electron travel. In Figure 7-11, we repeat the calculation with Q = 100 yC, but now
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Figure 7-6. Vertical Drift y =2, B_ =5 kG.
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Figure 7-10. Azimuthal Drift Q =100 pc, yo =1,0001. '
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A 3 for the electron cloud. The test electron still begins at rest. The orbit now
is smaller because the radial force is decreased by the presence of Bg. The test elec-
tron drifts in the toroidal direction due to AB x @6139.

Figures 7-12 and 7-13 show the results of test runs in which the torus contained
100 uC of charge, and the test electron was launched in the toroidal direction with rela-
tivistic energy. In Figure 7-12, the test electron was launched with y = 2, and the
curvature drift overpowered the azimuthal drift, causing the test electron to hit the
wall. In Figure 7-13, we reduced the test-particle energy to y = 1.5, and obtained a
stable, confined orbit. We note that the center of the orbit in the x-z plane does not
coincide with the center of the conducting wall; but is shifted toward the inner wall of
the torus. The trajectory can be centered in the torus through the application of a ver-
tical field, Bz'

The major problem encountered in relativistic electron injection from the torus
wall is that the electron trajectory lies close to the wall and is not concentric with the
walls. The inevitable result, therefore, is that unaided electrons will hit the wall.
One exception, which is not experimentally feasible, is to launch the electron from the
inner wall of the torus. Since the trajectories are displaced toward this wall, an un-
aided electron will be trapped within the torus. This situation is illustrated in Fig-
ure 7-14, which shows the trajectory of an electron having vy = 1.2 launched from the
inner wall with p6 = pw and pr = 0. The electron remains in the torus during the
entire 10 ns duration of the computer run. When the electron is launched in an iden-
tical manner from the lower wall of the torus, it hits the upper wall as shown in
Figure 7-15.

To overcome these difficulties, we use external magnetic fields to assist in
electron injection. The two basic types of external field under consideration are the
vertical magnetic field, Bz’ and the diverter field. The diverter field, a simple cur-
rent loop near the injection point, serves to locally distort the magnetic field lines
near the injector so that electrons can be introduced along field lines which run to the
interior of the torus. In this way, the electron trajectory is moved away from the

wall and the centering of the orbit becomes less critical. The successful operation
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Figure 7-12, Particle Orbit Q =100 uc, y = A =2,
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of the diverter depends on the local magnetic perturbation being large enough to allow

electron injection, yet small enough that the electron is unlikely to leave the torus

through the diverter after only a few transits of the torus. The injected electrons must ‘
remain within the torus for = 1 us, which is the expected duration of the high-energy '
electron pulse.

The vertical magnetic field acts to displace the electron orbits toward the

outer wall of the torus, thereby allowing us to make the orbit concentric with the torus

wall. Through the use of this field we can relax the diverter field, making successful

containment of the injected electrons easier. ‘
The vertical magnetic field BZ acts by producing a force on the electron in the

direction of the major radius,

This drift competes with the vertical drift due to grad B and centrifugal forces. To
displace the beam toward the outer wall of the torus, the vertical field must produce
a vZ drift which tends to cancel the toroidal geometry drifts. Neglecting v-L /vo

relative to unity, the curvature drifts are given by

2
3 A B xmc3
zc eRBw

For these two drifts to cancel, we require

2
B = = yme  _ 34 yRB Gauss
zZ eR =
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for R = 50 cm. Note that a negative (downward) vertical field is required to center
the orbit when vo is positive. This analysis indicates that the vertical magnetic field
can be employed to remove the need for a rotational transform by canceling the verti-
cal drifts due to toroidal geometry (curvature and grad B).

In Figure 7-7 we displayed the upward vertical drift of a test electron with
v = 3. From the above discussion, it appears that BZ = -96 Gauss should just cancel
this drift. Figure 7-16 shows that the expected result is realized when we rerun this
example with the inclusion of vertical field.

In Figure 7-12, we saw that Q = 100 uC did not provide sufficient rotational
transform to contain a test electron with y = 2. By adding a vertical magnetic field,
Bz = -59 Gauss, however, we can eliminate the need for the rotational transform and
the test electron is contained as shown in Figure 7-17. Note also that the contained
orbit is concentric with the torus wall. The inward shift due to the superposition of
vertical and poloidal drifts has been eliminated by the inclusion of the vertical mag-
netic field.

Studies are underway to inject relativistic electrons from near the torus wall.
Using vertical field to center the trajectory, the results shown in Figure 7-18 were

obtained. The electron was injected with y = 1.5, pr= 0, p,. =p from an internal
()

injector 1 cm from the torus wall. Multi-turn confinement gf the electron is evident
in the figure, which shows only the first 250 ns of the trajectory. The injector was
treated as an obstacle in the code and enclosed a 1 ecm x 1 cm x 1 ¢m volume near the
torus wall. In this particular example, the test electron struck the injector after
908 ns. Smaller injectors, wiii elcctrons emitted close to the edge of the injector

should be investigated in an o{fort ‘o determine if such an internal injector can form

tie basis of a high-energy electron source.
7.1.3 Self-Consistent Relativistic Equilibria

There are several approximate calculations for self-consistent relativistic
equilibria. The simplest approach is to assume that the electron motion in the '"beam

frame'' is non-relativistic and to then transform the resulting equilibrium to the

ISR




Figure 7-16. Cancellation of Vertical Drift by Vertical Magnetic Field Q=0,y =3, BZ = -96G). )
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(Q =100 4C, y = 2, B, = -59G).
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Figure 7-18. Multi-Turn Injection of a High-Energy Electron.
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laboratory frame via the Lorentz transformation. The result so obtained will be shown

to be equivalent to working in the laboratory frame using the ''two-mass' approxima-

t‘ tion, to be described below, in an expansion to second order in the small parameter,

q, where
8 2
q2 = —12— ER <<1
2y o
o

3
This expansion will be shown to be valid when y/yo << 1/4.
Starting with the beam frame (denoted by prime), and assuming the motion to

be non-relativistic, we obtain the single-particle constants of motion, |

1 2
H' =Emv' -e &' (r')
P =r'mv -2 A (r')
c 6
P’ = myV'
2 z

where all quantities are assumed to depend on the radial coordinate only. Any func-

tion of these constants will satisfy the stationary Vlasov equation, and we use

m TP e 1 A\l
F(r.\_/)—zﬂ nofs[H - wPy E]G(Vz)
m ' .1_ |2_ ' 1 '
¥ noﬁ[zmvl g(r)]é(vz)
where
2 2 Y H g
vV =v o+ v - ')
i r
and

' 1 1 2
gir')ysed - 9—‘:—1 A'6+§m(w'r') + ¢
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By computing the moments of F(r , v ), we see that this equilibrium corres-

ponds to a uniform density rigid-rotor with a finite beam radius, a . The non-

vanishing moments are

o
n'(r') =
0 r > a'
n' wirl r' < a'
n‘(l“)(V'e> oo
0 r'> a
1 1 \J r’ al
ri g' (r') <
1 |2 ¥ 1 2 m
nieiee Ty = i) (.~ w2 ) =
r 6 R
0 r'> a

where the beam radius is given by
g@)=20
together with the conditions for self-consistency,
g (> a) <0
g (rc<a)>0

which must be verified a posteriori.

We may also define a transverse “"thermal’ velocity

= A , 2 2 -2 L0
(V;>‘[("r7+("e>] iy mg()




The self-consistent fields are obtained from Maxwell's equations

4m en'o r'< a

LA 2 9%
r' dr' dr'
0 rt > al
4 envo wv rv/c r' 3 a'
d 1 d
—_ = — 7y =
dr¥ ' dr' Ae
0 r's> a',

Assuming the presence of a conducting shell of radius b', with &' (b') = 0, we

obtain
2
1 1
-N' e[1+21nb—' (r_'> ] r'< a'
a a =
d' (r') = o
2N'ezn§ a'<r'<b
r'/a’ r< a'
2N'e
A= = =
a'/r ate e b
le r' N.eﬂ'_r' 1_&(1) r'< a'
2 o 2 \a o
A' (r') =
' ' 1
(w_a_)a_ at i e b
2 o c ) = i
2N'e w'a' r' .
B'-——( ) 1-(-) r'< a'
a' c a' g
B' (r') =
2 B:) a'g r'< b,




Returning now to g' (r'), we must verify the conditions for self-consistency and

derive the relationship between the beam radius and '. The equation g'(a') = 0 implies !

2
2 b 1 i'a! 1"
E' = 9N'e gn— + = eB'a’ (.‘L.:a_) - l N'e2 (.&;a_.) i“
a 2 o c 2 (o |
M
2 “
1 ‘l 1
L e (a-_L)
c i
Using this expression, we obtain
eB' a‘ 1! 11 2 ' 2
o el = | < (uz_) . sed o L ogig? u) [1 i (L) ‘
l 2 c c a

QO>L _‘f_P_l,'_L(‘L'?;‘ +__“L-—
R e 2 c) 'y

Similarly, for r' > a' we obtain

2 2
20 B! ‘ 1 2 (p'a' i w'a ( i )
! 1y = 1 —_— = - = 1 1 ks =1
g'(r'>a') 2N'e "na'+lzmc ( p ) 2eBoa( c) [ =

which must satisfy g' (r' > a') < 0, or

24 w '
(78]

g o4 B,
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Finally, using
1 2 ;i 2 b' ,
Em(vl)=g(0)=—N'e [1+2zn;]+g

we obtain a quadratic equation for (',

(e [+ () T o o) o[ (B -

which has two solutions, w'i, given by

Qv a! - w’a' 2 va! 2 (V' 2)
JEE) - e () () -
c 4 c 2 c 2

c

The requirement that w'i be real introduces an additional condition,

2

2 2
(74 w'a' (AN 2
0 s 2|1+% <—p—— [ 1+2 = £ ]
w' = 4 c 02 w‘pa'

p

2
If this equation is satisfied and (v'_L Y > 0, then a self-consistent equilibrium has been

found. We can prove this statement by rewriting the quadratic equation for w', as

2 2
1 \ 1 ‘V ]
Do a e ARV L T, Nl
w' w' 4 c 2 ' .2 2
p p wpa

which satisfies the conditions for equilibrium provided (v' 2) > 0.
i




To transform to the laboratory frame, we use a Lorentz transformation !

r =r,a=a,b=10 ]
|
: w = 'y !
= v !'
V.L VL/yo
&' = = i
Yo L BoAz) i
[ - 0 = = A = ’ B = ‘
AZ Yy (AZ Boé) orA, 304) a Bo Er
Ae = AO orB0 = Bo, Bz= Bz "

The plasma and cyclotron frequencies transform to

2 2
o' ¢ 4mn' e2 4mn e W
0 = = g & e
p 2 2m Sm 2
% % % Yo
o eBo
o
Q = =
o % -yomc

2 2
with = 47 noe /yom. The self-consistent rigid-rotor frequency is




and the condition for equilibrium is

N @ ) ( . o i

* A ) SRS 50 DS < o > BT ¥ |
2\ 9 - 4 ¢ % 2 2 i

O w a ‘:4

D

2
which we plot in Figure 7-19. From the figure we see that ¢ << 1is required when

2
wp a/c is large. Since u/yo = .25 (wp a/c)” is the ratio of beam field energy to par-

2
ticle kinetic energy, we see that g~ is a small parameter for equilibria which store

energy mainly in the beam self fields.

This equilibrium may also be computed in the laboratory frame, using the

"two-mass'' approximation, where the axial velocity is written as e VO % (vZ - VO)

with the assumptions, V0 S5V |vL - Vo| and V0 assumed to be constant. In this
Fa &

approximation we may write

: mv) = ymV + 3m'
at (ymy) = ym Yy *% x“
mv + 3m\" e
- 70 == ')’0 zZ Z
\"—v(vi)/vzs"—\'r v
e gl R i |
-1/2
where % a- BO ) and Bo = Vo/c. The single-particle equations of motion
are
2
Yo e 1
— - = - + = B -
m m + e Er » (v9 . vZBe>
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% dt r c vrB7
dv dA
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These equations were derived from an expansion to second order in the small param-
2
eter, q, keeping terms to order q , by Rostoker and Hieronymus.
The claim, dAz/dt ~ 0, implies the constancy of v, In fact, the cancnical

axial momentum,

is the exact constant of the motion. To have dAz/dt ~ 0 to order q2, we must estab-
lish that the change in ¥ during the particle orbit is of higher order. The radial vari-
ation in the trajectory of a single electron which executes an azimuthal drift at velocity

- \ i
V6 wris

Do
]

2v
R il o R
Qo (9]

o

Ar | o2
r =
The change is Az(r) over Ar is
dAz 2Ne60r
g il Aoie T E ok

From the constancy of Pz, we see that the change in vz over the electron trajectory

is




or

To satisfy

for second-order constancy in v , we must require
z

v
D
3<
¥

e

o

With this assumption, the single-particle constants of motion are

(o]

b 2 SN 2
I{J.—z-ym<vr +ve> e (d BOAZ)

e
Pe = -yOmrv9 e rA6

V. oV
Z e

2
correct to order q . The distribution function

yomno
F(r, v) = . 6 | HL -~ wPe - EO]G [Vz - VO]

yields the same equilibrium as was previously obtained by assuming non-

relativistic motion in the beam frame.




If we attempt to use the two mass approximation with the full constants of

motion,

1 2 :\ L 3 2
H = = , y R -
2-ym<\r v, s Y% MV, e d (r)

7

e
P = mwmrv. - = rAe(r)

P
zZ

3 e
yo mvz = Az (r)

in the distribution function,

= 9 = \ - —/3
F(r, v) = 2.6 [H w Py 50]5[PZ «omvo] ,

the macroscopic velocity in the axial direction is found to be

w. T
tvy=v 1|2
z 0o\ ye

for r < a, where I0 is the modified Bessel function of zero order. To satisfy the

requirements of the two-mass approximation, V0>> IvZ - Vol , we must have

w._a

A
AN
-

C
o
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or again

=t

Yo

Lo Ll

With this inequality, we may expand the Bessel function and we recover the previous
equilibrium. The two-mass approximation, therefore, corresponds to assuming non-

3
relativistic motion in the beam frame and appears valid when y/yo << 1/4. A more




exact condition for the validity of the two-mass approximation will emerge below,
where we discuss fully-relativistic self-consistent rigid-rotor equilibria.

In terms of the fully-relativistic single-particle constants of motion in the

beam frame (prime),

2 2
mc \/1'+ (p'/me) - ed'

H' =
e
P! = r' foo— A
g} (pe c G)
P' = p'
z P,

where p'z = mv’Z and p’9 =4 mvé = (p'y x' - p'xy')/r' = p“L sin (¢ - B8), we consider

an equilibrium distribution function of the form
F (r', p)=K'6 [H -wPe—go]G ®")

2
Introducing the variable y = /1 + Ln‘l/mc) , the density and macroscopic velocity may

be evaluated as follows

n'(r‘) = fF (rl’ 2!) dB'

© 2m

gt 2 ,
=K'mf y dy f dcols[y-"”;— y -lsm(o-ﬂ)-g'(r')]
it (¢}

@ " 2
1 (o]

Tyt 2
5[y - wf;‘ /y -lsin(m-e)-g'(r')]
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where

To carry out the indicated integrations, the §-function may be expressed as

1 2
" & (0o-0)
Tt
;!;cr / y2 o cos Oo{ o

where
1/2
2 2
1! 2
%(‘f—) ¢ -1 -[y-e @) }
COS(_D0 = pe
(‘!\'21" ) )2_1

with the requirement

(‘f—)z (*-1) 2 [v-ee]®

To satisfy this equation, y must lie in the range, y <y < ¥ where

1 Or! <2 2
I g'(r') “‘f— \/;'(r‘) = [1-(u.~'r'/c) ] ;

as shown in Figure 7-20. The two intersections y , coalesce to one when

g = J/1- (w'r'/c)zin which casey = ﬁ - (w'r'/c)? > 1. The radius of
the beam is defined by
2
g'@) = J1 -~ (wha'/ec)
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with the additional requirements that

2
gir' > a') < 1 -(w'r'/e)
gerca) » vi- (w‘r‘/C)Z

which must be verified a posteriori. These conditions ensure that the density vanishes
for r' > a' and is finite for r' < a'.

The moments of the distribution function may now be evaluated as follows:

y

2
n'(r') = K'mf i e y dy :
v_ \/(w‘r'/C) v ~B=ly-g il

; 2 y+ S
r K'me 2y -g'@') ldy
n'(r') 3% 9) e ri 5
y_ Viwr'/e) ¢" -1 -y -g' ()]

which yields the moments of F(r', p'),

fipfy = ZWK'mg'Q') o _2. () |3 1
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for r' < a'. The moments vanish for r' > a'. We have defined n' = n'(r' = 0),
2. -1/2
B, " gie =) and*r'f[l-(w’r'/c) ] '

We now transform to the laboratory frame and write Maxwell's equations.

In the laboratory frame we have
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Maxwell's equations may therefore be written as

1 d SR, ewr 3
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By multiplying the first equation by wr/c and adding to the second equation, we
obtain

da wr "
dr [Bz+ c Er]—o
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With this relation we can reduce the problem to a single equation for Er’

i E

d 1 d L E AR TRy 2 pr -
PE— T > = A -
dr 3 dr ) Lo L2 ®i % e -
rly.L y.L
where
2
1 : 4wnoe
L 2 (L
0 % &%

This equation can be solved analytically in the limit y ~ 1, where the perpen- v
f .

dicular motion is non-relativistic. Define the dimensionless variables

x = /L



with boundary conditions f (0) = 0, f'(0) = -n/2.
The solution is then

o
b —

2 -~
fx) = (27, w -l ® -y, wX

and the corresponding potentials are
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where &(0) = 0 has been assumed. From the equation for g(r) we see that

2
‘YOEO wLo
go=g(0)=—_2= (__p___c )
¢ mc
and
2 -
2‘y w 2
E® | p g+ —2— [1-1 () + )
g (6} 4
o]
e 2 .3
Y. WX
) X - 2 X 2
P -— \ —_— e = Sy - o |
" g 7 Wy, ) 5 * win 2u‘yo)hl.2(xh

where Io(x), 1 1 (x) and I 2(x) are modified Bessel functions.




The assumption - - 1 implies that the diamagnetic contribution to Bz be
small. In fact, the solution presented above is not exactly self-consistent as may

be seen by computing the density from the solution for f(x)

1 d
nx) = -no px dx x f
2 — & =
2y w 2y, w
= - 1
® ra ) 10 x) + " -
n
= = ke
&
which yields
9 B

: =1 @& * —;—— [l-lo(x)]

which differs from the previous expression for g(z‘)/go by just the diamagnetic con-

tribution to A q and is consistent with assuming P 1.

In terms of
- 1 &
o 2 ;
2
yo
or
2
o DO %
wo 2 2 Qi
Y

e .




the equation for g(r)/| g, becomes

and

E
|
=
1
oEilE |
—

defines the radius of the beam so that

-1
1o (a/Lo) g
I (@/L ) -1
o (o]

-

v .
o

If a/ L0 ~ wp a/c >> 1, we obtain ¢ -~ &0, and the density is approximately uniform.

For this case the fields are

E () ~=-2menr
r = o

1]
le)
o]

B, (1)
= e
B,(r) = B, + (7)

The conditions for this simple equilibrium are “, a/c > 1 and w, a/c < l/yo,

which may be summarized as

2 2
1/4 < v/yo < ('yo /) (QO/ wp)

= = + ®
where Q eBo/-yo mc and B_= B, + 2Ne wo/c This equation implies B, > Bo/ 2,
which places a limit on the diamagnetism of the beam. When this equation is satis-
fied, the resulting equilibrium is the same as that obtained using the two-mass ap-
proximation. This inequality, therefore, gives the condition for validity of the two-

mass approximation.
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We now turn to the numerical solution of the field equation for arbitrary Y

In terms of the dimensipnless variables, we have

R R GOSN NERONe £
a 3 dx T g Vg P
‘y.L Y.L

with f(o) = 0 and f'(0) = -n/2. This equation may be expressed as two first-order

differential equations,

daf 3 1

d)n{—‘y.Lh_xf

d_h____ f 4 2 =

dx 2 % wX
Y

with f(o) = 0 and h(0) = ~n. In this notation

. -_2_.~1/2
Y, ® = [1-(y,wX) ]
and the problem is specified by three input variables, A ; and n. The physical
range of xis 0 < x < X s where xc = (yo (;)-1 is the point where Y, (x) becomes
infinite.

We can reduce the problem to a two-variable parameter space with the

following transformation:

» |
]

Yo wX

f = f/yo
K = -h/n
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with which we obtain

3
T n/y,) g O

dx (v, w) X

dh 1 X

— A e 2 f 3 o
dx (n/y) (v, wy, (W) (v, w)

-1/2
with f (0) = 0 and h (0) = 1. Here, ¥, x)=Q@1- x2) and 0 < x < 1 is the physical

range of x. The problem now has only two input parameters, ¥ ; and n/yo. These
equations are solved by a standard Runge-Kutta integration procedure.

The two input parameters represent a two-dimensional parameter space which
we may depict as a plane. Our first interest is to define the subset of this plane in
which self-consistent equilibria exist. This region of the plane will be referred to
as the equilibrium parameter space.

The density is given by

x|
i
-

VI

% =
& e

/
n(x) n0 'n/‘y

S = = =
y, @ E ®

3 = -
Y, ®8 (X)/g %

or

g(;)/go h (x).
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The condition for equilibrium is

ry

“«
AN
2]

<! -1 P
gX) > .)/.L (&) 1o

— e 2 =
g(x) < v (x) for x > a
&

= 7 S
with the beam radius, x = a, given by g (a) =y  (a).
. =1 iy ’ o b
Since g(o)/go =y (o) =1, we can satisfy the first condition only if g, > 1.
_1 -— -
Furthermore, since y (1) = 0, the second condition requires that h (x) pass through
zero somewhere in the interval, 0 < x <1. Figure 7-21 illustrates the two types of
= = ==
equilibrium solutions which are possible. Curve "a" has the properly h (x) < v (x)
i
for all x. Consequently, any X in the range 0 < X< X , Where h (x y =0, can
max max

be the self-consistent beam radius with the suitable choice of g ,
(¢}

== - _-1
g =[h@y ) .
(6] X

Curve "'b", on the other hand, allows self-consistent solutions with beam radii in

- -— _1 -— -—
the range, x_ . < X<X , whereh (x_ . )=y (x_.)andh (x )= 0. AnyXx
min max min 1 min max
in this range can be the self-consistent beam radius with 8, given above.
For X > :;, we must calculate h (;) from the vacuum field equations, with con-

tinuity at Xx=a imposed as a boundary condition on the potentials and their first deriva-

tives. The resulting expression is

_'2 _2
o e Y a - ==X
s s a) = hila)y=g5 sy [l-af(a)][—— —1}
2 (v, w) (n/%) -

af (a) X

- = Ln (_)
/

(};)w) (n 70) a

which must pass through zero somewhere in the internal, a < X < 1, as noted above.
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Figure 7-21. Equilibrium Solutions.
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If we fix yo &S and vary n/yo. we always find equilibrium solutions for small

values of n/-yo. As we increase n/yo, there is invariably some value at which the

solution no longer satisfies h (;) = 0 somewhere in the 0 < x < 1 interval. Equili-

brium solutions exist, therefore, only for n/y less than a maximum value which de-

pends on % 5 The region of the parameter s;)ace where equilibria can be found is .

shown in Figure 7-22. For 8 w < 0.3 the equilibrium parameter space is bounded

by the curve -n/-yo = -yo w » Which is just the familiar result,

2
&

s “p
Qi

-

For larger values of Y @, the boundary curve peaks at n/-yo = 0.63 and 8 w = 0.45,
and then falls off, approaching the curve n/-yo = 1/(2'y0 w) for 3 @ > 2. In this region

the maximum value of 7 is independent of %

The equilibrium parameter space shown in Figure 7-22 includes all possible
equilibria. For application to an energy storage device, those equilibria which corres-
pond to high v/‘yo beams with large beam-field energy compared to the guide field energy
are of particular interest. It is necessary, therefore, to examine the characteristics
of the equilibria which are possible in various regions of the equilibrium parameter
space.

Having fixed % w and 17/70 within the equilibrium parameter space, we can

solve the field equations for f (x) and h (x), and we then know
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- - - -, -1
At any x we may calculate go =Th (x) 74. x)] ~, and if go > 1, we may designate
the chosen ; as the (normalized) equilibrium beam radius, ;, which is numerically

equal to s v6 (a)/c. For X > a, the fields are given by

1}

vy

1 -
oF Bq (x)
(o]

Er (x) I:r @)

B
o

it

B ()
Z

where BO/Bi =1 -af (a) is the ratio of the external guide field to that at the center

of the beam. This ratio measures the diamagnetic strength, 1 - Bi/Bo'

In terms of these quantities, we may calculate v/-yo for the beam,

2 a
£ = < 5 f 2nrdrni(r)
Yo -yomc 0

g, Ty
—— af
(n/y) Oy w Hetaey

I |
2

If the beam is enclosed in a concentric conducting shell of radius, b, the self-field

energy per unit length, W, is given by

2 -—
2y -1 a 2 9 2
= .
—w—=_22 g 2 f xdx f (x) + a f(a)zn;
M a (b/a) (BO/Bi) 0

where WM = frb (B /8 m) is the guide field energy per unit length. The mtegral in

this equation is computed numerically along with the field equations for f and h. The

potential well depth, 4)0, associated with the beam is given by




% 1 1 fa AR Ly
= X a a )1 M
Y,B b a  (/a) (B/B)) A a

and this integral is also computed numerically.
To complete the specification of a particular equilibrium, we need to specify

and eithern or B . Knowing y , we determi o
% i Oo » owing yo e ermine 7 and hence ""p OO,

£
loe}

e e

24
which relates no and BO. Since go = (pro/c) , we can determine LO, and all equili-

brium quantities are then known explicitly.

To illustrate the above discussion, we construct a particular equilibrium in
detail. For example, for ¥y (:\ = 0.3 and n/yo = 0.5, which is within the equilibrium
parameter space, we can discuss the self-consistent equilibrium having normalized
beam radius, a = Y, v9 (a)/c = 0.8. _In this example tile results of the numerical in-
tegration of the field equations are f (0.8) = -0, 826, h (0.8) = 0. 228,

W/WM =0.114 2 y02 - 1) and <I>0 = 0.2875 -yoBob, for b/a’= 2. The appropriate g0
for this beam radius is go = 2.63 since yl (0.8) =1.67. With these results we can
derive v/yo = 5.80, w, a/c = 4.33, wp/’yo Qo = 0.185 and BO/Bi =1.66.

For definiteness, we now specify B0 = 20 kG and c M 11. Then,
wp =6.53 x 1010 sec—l, n0 =1.5x 1013 cm-3, L0 = 0.75 cm, and the beam radius is
a =2 cm with b = 4 em for the conducting outer wall. The guide field energy is
WM = 80 J/cm3, and therefore the field energy associated with the heam is
W = 2,2 kJ/em since W/WM = 27.6. The average energy density associated with the
beam field is 44 J/cm , and the depth of the potential well between the beam center
and the conducting wall is 75.5 MV. The electrostatic field is maximum at the beam

edge, where Er = =33 MV/cm and falls to Er = =16.5 MV/cm at the wall.
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The beam line density for this equilibrium is N = 2.3 x 1014 cm_l, corres-
ponding to 36.5 pC/cm of stored charge or a beam current, I =1.1 MA. Since
o 18.3, which is 8.85 MeV electron energy, the total kinetic energy of the beam
is 320 J/cm. The equilibrium fields and density profile are plotted in Figure 7-23.
On this figure we see that the beam density is close to unitorm out to ihe beam edge.
Although the input parameters ) w and n/‘yo are useful for simplifying the
solution to the field equations, they are not the most useful set when searching for
a range of parameters in which favorable equilibria for energy storage are found.
As the previous example illustrates, there is no question about the existence of equili-
bria which can store large quantities of energy. ’i‘he remaining question concerns only
the range of equilibrium parameters in which such equilibria exist.
Within the present formalism we must specify six parameters, -yo ;, n /yo.
% VG (a)/c, Y b/a and either no or Bo’ to completely specify an equilibrium solution.
A more relevant set to the design of experiments would replace the first two param-
eters, 'yo;a.nd n/yo, by wp a/c and wp/'yo Qi (there are many other possibilities).

The relationship between these two sets of parameters follows from
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These equations give us a procedure for inverting our formalism so that wp a/c and
wp/'yo Qi can be specified instead of Y, w and -n/yo. We first note that since go e |

for equilibrium,

[y (75}
e T s - ]
Y %o v Q v Q

o] 1 1

is required. From Figure 7-22, there is a bounded region of % ; for which this in-
equality is satisfied. We need only examine values of % ,:3 within this range. In par-
ticular, for wp/-yo Qi > 0.63, there are no equilibria.

Having specified w, a/c, wp/yo 0, and a = % ve (a)/c, we pick a value for

% w Wwithin the range given by -n/yo > wp /yo Qi on Figure 7-22 and solve for n /'yo,

T v a \
i ='Vow (u.p)( u.p)
Yo a v ‘yoni

From Figure 7-22, we find the maximum value of (n/-yo) at the particular choice of

g A &. For equilibria to be possible at all with these parameters, we must have

>
v

(._n_) N Aot h
(o] max ‘yo 'yo &

i

If these conditions are violated, we choose a new value for Y w and begin again.
When the inequality is satisfied, we integrate the field equations to x = a, and solve |
for g, If go > 1 is satisfied, we have a solution which has the correct value of the
product, ( w, a/c) (wp/yo Qi). We repeat this process for various values of Y, W
until a solution is obtained which also has the correct values of wp a/c and wp/-yo Qi

individually.
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Since n/yo < 2 yo w for all points in the equilibrium parameter space, we

know that equilibria are possible only for

We, therefore, define the composite parameter

/ \
( wy & c) (uD/vo o)

1= < 1.
2y0 Y (a)/c

In terms of this parameter, the two-mass approximation yields the beam-associated

field energy per unit length as

. 2 (v_v, /c)¢
W 2 q
W, 2e, Tl (-) ;

M o

L)
o

2
1 + (-yo vg/c) £

In Figure 7-24 we plot this expression for comparison with the computed material
results for W/WM, with b/a = 2. For Yo v6 (@)/c = 0.2 and 0.5, we see that the
numerical results approach the two-mass result as £ nears unity. This behavior is
not surprising since £ = 1 corresponds to the familiar relation, w = wpz/ 2 'yo2 Qi'
As we increase Y ve (@)/c to 0.9, where the two-mass approximation is not expected
to hold, we find that W/WM becomes larger than the two-mass result.

Similarly, Figure 7-25 presents the numerical results for u/yo, which in the
two-mass approximation is simply u/-y0 =0.25 (wp a/c)z. Again, we find that for
; v 0 (@a)/c = 0.9, the numerically calculated value of v/‘yo lies above the two-mass
result.

These calculations have shown that there is no new limit to the stored field
energy as yo v9 /c nears unity. In fact, self-consistent, fully relativistic equilibria
at large values of %, vg (a)/c store larger quantities of energy than the two-mass

approximation would predict.
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Figure 7-24. Beam-Associated Field Energy Normalized to Guide Field Energy.
Rostoker-Hieronymus (Two-Mass) Result Plotted for Comparison.
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7.1.4 Relativistic Fluid Equations for Non-Neutral Plasma

A major vbstaclc in chtainine theoretical results for relativistic non-neutral
systems has been the nonexistence of a set of fluid equations with a physical basis
for closing the moment hierarchy. In the absence of such a set of equations, the
only available tool for theoretical equilibrium and stability analysis has been the
coupled Maxwell-Vlasov system of equations. This system yields analytical solu-
tions only in the simplest geometries. Fully-relativistic cylindrical rigid-rotor
equilibria, for example, require numerical integration for the equilibrium fields.
Stability analysis requires that the equilibrium particle orbits be employed as
characteristics to determine the perturbed distribution function, which in turn must
be integrable over momentum space to obtain a dispersion relation. Analytical
solutions are therefore very limited since the equilibrium fields themselves are
often not known analytically, and even then the particle orbits are usually known
only as quadratures, a form which is not useful as a characteristic. Numerical
solutions of the Maxwell-Vlasov system are possible, but generally require difficult
and expensive particle simulation techniques, which are beyond the scope of all

but the largest computers.

By contrast, non-relativistic neutral plasma physics has long benefited from
the existence of a closed hierarchy of MHD fluid equations, together with a number
of adiabatic laws and an energy principle for studying stability. This impressive
theoretical formalism has allowed the study of neutral plasma in such complicated
configurations as symmetric and asymmetric toroids, including toroids of non-
circular cross-section. Also, much of our understanding of the physical mechanisms
which underlies gross neutral plasma behavior comes from fluid analyses.

We have, therefore, undertaken the construction of a closed set of fluid
equations for non-neutral relativistic plasma. Aside from the obvious application

of such a set of equations to the electrostatic torus, a fully-relativistic system

Tk R
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of fluid equations would provide a significant tool in studying the physics of diodes,
where the electron beam is usually non-neutral.

The most logical place to begin such an undertaking is with the two-mass
approximation. Here, relativity enters in only a peripheral way, and problems
associated with the non-neutrality of the system can be isolated and studied. To
display the full complexity of the general problem, however, we will discuss
the moments of the fully-relativistic Vlasov equation before specializing to the
two-mass approximation. While it is inadequate for diode problems, the two-mass
approximation is quite sufficient for describing the electron beam in an electro-
static torus, and for studying relativistic injection techniques.

The fully relativistic Vlasov equation may be written as

Af 3 of
e vf—e[§+ch§].ap. =0
212 2.-1/2
where p =ymy andy = [1 +p2/m c ]1/2 =[1-~ v2/c 4 A . To compute the

moments of this equation we define

(onos i/(...)fdp_

The relativistic moment equations are then given by

an &
At+v n<v> = 0
a ' Y &
*n<v>+v.n<vv>+EE- lI-'_—— y = amen xB=0
At = . m = Yy = 2 me b A7
Ye

a v 3 y
£n<l>+v'n<—> e SR ne<—2-> *E=0

Y Y me y
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The equations are the usual continuity equation, which is the zeroth-moment
of Vlasov's equation, together with the v-moment, [dp v [Vlasov Equ] , which is
necessary to determine <v> in the continuity equation. The remaining equations,
which are the moments with respect to 'y 5 v/‘y, v v and v v/y, are all required
to close the second (v-moment) equation. The moment hierarchy which is obtained
by this procedure is seen to be a multiply-branched system, in which each moment
couples not only to the next moment, but to several higher moments as well.
This property precludes closure of the set in the usual manner, i.e. by neglecting
a single quantity such as heat flow. The situation is more complicated here compared
with the non-relativistic moment equations because of the occurence of ¥ in
relativistic mechanics. In the non-relativistic domain only moments with respect
to 1, v, vv, etc. need be computed because p = my and kinetic energy is E = mv2 /2,
i.e., half the trace of the v v -moment. Relativistic mechanics has p =ymyv

and E = y‘mcz, which requires a distinction between p and v moments, as well as

requiring separate moment equations for energy (the y-moment) and pressure
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(the p v-moment). At the present time there is no general physical technique for
terminating the relativistic hierarchy of moment equations.

For various specific applications the hierarchy can be closed by postulating
the form of the distribution function. which is then emploved to explicitly calculate
the form of the unknown quantities required for closure. This technique was employed

by Toepfe r(2)

, who used a relativistic Maxwellian to study steady-state solutions, and
by Mosher(3), who employed a mono-energetic distribution to study e-beam interac-
tions with high-Z plasma. The results obtained by this technique are only as valid as
the assumed distribution function. In Toepfer's work, for example, the use of a
Maxwellian to study steady-state problems is reasonable since the departure from a
Maxwellian behavior is only valid in the collisional regime where equilibrium times
are short.

We turn now to the two-mass approximation, in which the electrons are rela-
tivistic in one direction only, i.e., vZ =V + (vZ - V), where V >> vl, \vz - V’. In
this approximation, V is a constant, Bo =V/c, and a- 802) _1/2. Rigid-rotor
Vlasov equilibrium and stability analysis in both cylindrical and large aspect-ratio
toroidal geometries have been performed in this approximation by Rostoker and
Hieronymus(4). These results have been presented in a previous Final Report.

The Vlasov equation in the two-mass approximation is written as

3L o 1 . i el 1 B
af +1-Vf-ym [g;+c(lx§){| 5% 3 [Eu+ vxg)"] _-0
|

L
o - v “m

where f = f(x, v, t) and 1, j refer to directions perpendicular and parallel to V.

- A.J. Toepfer, Phys. Rev. A3, 1444 (1971).
i D. Mosher, Bull. Am. Phys. So. 19, 856 (1974).
. J. Hieronymus, Ph.D. Thesis, Cornell University (1971).




We define the quantities,

n =
<V :jflfdl

P = mj-<y> (x-<ygx)fde

g = m/(1—<z>) (v-<v>) (v-<yv>)fdv .

With these definitions, the first three moments of Vlasov's equation are

a—n+v-n<v> =0

3t ~

nd<X>‘— P—nEE+l<v>B

m dt _— Ly c(_ x_).L
o

o)

s PtV j<e> Py ]+P.v<v>+[p.v<v

ot = - = = = - = -5

(2 @BL-®0. ) -

where d/dt = 3/3t + <y> + v and the cross-product operators (Bx)., vand (xB).  are

defined by

@X)J.," w @X Wi

W (XB)i,

= (wx B),,

for any vector w. Here again 4, s are with respect to
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is the transpose of P « V <v>,

This set of equations may be closed by setting the heat flow tensor to zero,
i.e. Q = 0. Unlike ordinary one-fluid MHD theory, however, it is unnecessary
to as;ume a form of Ohm's law to complete the equations. In particular, the infinite
conductivity assumption, E +<v>x }E/ c =0, is very restrictive for the single-
species equations considered here. This assumption wouild drop ali electromagncti
terms from the force equation since for a pure electron plasma the current density
is J = ~ne <v> and the charge density is p = -ne. The infinite conductivity equation
is therefore equivalent to setting oE + J x §/c = (. In the one-fluid MHD equations
the situation is entirely different because infinite conductivity is expressed as

E+Ux E/c = 0 where Uis the center-of-mass velocity given by

_ 2 mn<v>
2T T mn

and the summation is over particle species.
To check the fluid equations, we begin by comparing the steady-state solutions
from the Vlasov formalism with the steady-state fluid equations. To construct

an exact two-mass Vlasov equilibrium, we begin with the two-mass equations of

motion,
2
dv v
) A 1 1
yom[dt ) x‘-J —ne[Er+cVE)Bz-cszE)-J
dv vrv6 o
; : G
‘yom ( dt 4 o c VrBz
dv
3 2 e
=@ T "5

5
See for example 1.B. Bernstein and S.K. Trehan, Nucl. Fusion 1, 3 (1960).




for a cylindrical beam with self-consistent fields Er’ B o Bz which are functions

of the radial coordinate only. The constants of motion associated with the equations

of motion are

1 2 2 S 2
. = - - ~— -ed
b H 270m (vr +vg )+2'yo m vz e (r)

G
n—crAn (r)

P, =y mrv
o

o)
]

3
Y mvV -24a (r)
o Z ez

G A

£ We write the equilibrium distribution function as

4 2
yo i 3
G = —_— - p - 6 =
Fx, V) o n S -w Po-€)O(®P, -Y mV)
‘o 5 B 8 is ]
= J - + 1 - -

o Do OLWy to¥ BmY U(r)) [vz A -V
Y mc
[0}

where

3 2 2
w, = 5 Y,m [vr +(vg-u,or) ]

e 1 2
= = -ed - — s -
U(r) = w rAp e zyom (u,or) €o

o
The moments of F(x, v) which are required to determine the equilibrium
fields are

. n(r) = nOO (a-r)

n(r) <vp> nwr © (a-r)

n(r) <vz> il ¥ spoes AZ)G (a-r)
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where © (x) is the unit step function, which is unity for x > 0 and zero for x < 0.

The beam radius, r = a, is given by ¥(a) = 0, where

I(r) = i 3m (V +
270

2
AZ) + U(r)
'yo me
and we have assumed ¥(r<a) < 0 and d(r>a) > 0 as can be demonstrated a posteriori .

Higher moments of F (x, v), which are required in the steady-state fluid equations

are

-1
P =P = -'yo o U(r) © (a-r)

The remaining components of the pressure tensor are zero, and also <vr> = 0.
We can now show that the steady-state fluid equations are satisfied. The

continuity equation is

Ven<yv> = nv.<y>+<y>.vn =0
which is satisfied because <Vr> = 0 and all quantities depend only on r. We therefore
have

nV'<X>=<Y_>~Vn=0

The 6 and z components of the momentum equation are trivially staisfied. The

radial component is also satisfied because

9 n e Y. > <v >
v.eP=8 [nmw r--o—(E+ B -—= B )
= r o 3] 'yo r c z L+ 2}

o>
Ly |

= -[nm<v>.v<v>+E E s <v>xB)] .8
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The pressure equation is satisfied because

(P @B), - @Bx.P) =0

Y me
(o]
while
i e
E: wgrrlpevans} == fpan) ey p]
‘)’0 me
9
=—— Ym)B, (88 +2 &1
@ = i
'yo me

We used v - <v> =0, <Vr> =0 and _1_3 = l=3 (r) in obtaining the above results. The
steady-state fluid equations are therefore satisfied by the moments of a Vlasov
equilibrium.

To complete the equilibrium calculation, we compute the fields from Maxwell ‘s

equations. The result can be used to calculate <v2> explicitly,

<v> =V +
vz 3

mece
70

W r
A(r) = VI (—P-—>
z o\ vy

c
o}

where IO is the modified Bessel function of zero order and w ‘- 41moe2/yom.
For this solution to be meaningful, we must require V >> l<vz> - Vl, which implies
that the argument of the Bessel function be small. The equilibrium is therefore

valid when
w‘yos << 1/4

which is only a weak restriction on v/‘yo. In this limit the equilibrium obtained

above reduces cxactly to the Rostoker-Hieronymus two-mass equilibrium.
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Returning now to the full set of fluid equations, closed with the assumption
Q =0, we can establish the adiabatic law for isotropic pressure, P =p I, by

taking the trace of the pressure equation,
3(—12 +OP N <> =0
at T

-1
We use v - <v>=-n ~ dn/dt, which follows from the continuity equation, to obtain
the adiabatic equation of state

d  -5/3 _
it (pn ) = 0

The same result follows from ordinary one-fluid MHD, provided the additional
assumption of infinite conductivity is made. The adiabatic law for the two-mass
fluid equations does not require this assumption. As an ¢side, we note that the
double-adiabatic law, or Chew~Goldberger-Low theory, does not follow from
our set of fluid equations.

Using the adiabatic law derived above, the linearized fluid equations may

be written as
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it - "Naha ™
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where we have dropped the angle brackets, < >, from our notation. The presence
of the zero-order velocity, Yo is required by Earmshaw's theorem, which states

that there are no static equilibria for an unneutralized collection of charged particles.
A non-neutral equilibrium, therefore, must be dvnamic in character. This feature

of the equations spoils the usual derivation of the energy principle, which does not ’
apply in its conventional form to non-neutral systems.

To study the stability of finite-radius equilibria, such as the rigid-rotor
equilibrium described earlier, the linearized fluid equations become a coupled set
of ordinary first-order differential equations which in general may be solved numeri-
cally by the Runge-Kutta integration procedure. Analytical solutions are possible
in special cases.

As an example we analyze the well-known diocotron instability, and compare
our result with Levy's non-relativistic analysis. We assume an equilibrium specified
by no(r),v o(r), vzo(r), po(r), Ero(r), Bpo(r), Bzo(r) for an annular beam with ;
inner radius, a, and outer radius, b. The diocotron mode is an electrostatic,
incompressible, azimuthal mode of an unneutralized beam. We therefore specialize

the analysis to perturbations which satisfy

By = Vo
B, =0
Vev=0

=1

|
|
i
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and assume all perturbed quantities to be of the form

i20 - iwt
n, (x, 6, t) = nl(r) e

with no dependence on the z-coordinate.

We define the frequencies

eBo
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and solve for v1r in the linearized momentum equations,
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Using the linearized pressure equation, we obtain

-i d
= : V1r po
4 ¥ @ dr
Therefore
&
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The perturbed density then follows from the linearized continuity equation

-iv dn \
3 10 (o) T
1 ) ar

which is the source function in Poisson's equation.
For an equilibrium with constant v v and uniform density, no, within the annulus and
zZ
for a pressure profile, po(r), is goes smoothly to zero at the beam edges, Poisson's

equation is simply




rdr © dr r2 1 H

with jump boundary conditions at the beam edges, r =a and r = b. On the inner

surface, for example, the jump condition is

2 [¢]
; (d_i) -(&) : wp (dcbl) _(2 V(@) A ) wl(a)
3 dr/ + dr/ - 2 dr ke a . ) a @(a)

a a o {a)

where

-
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P
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If we take the non-relativistic limit ('yo =1, O i 0) and look for low frequency

disturbances such that

vy (@)

w, , W << O (a)
P z

we recover Levy's(ﬁ) formulation exactly. The stability analysis then proceeds
as in Levy's work, where the characteristic frequency (or timescale) is seen to
be wpz/Q 2’ Retaining relativistic effects in our analysis, in the low~frequency
regime, the characteristic frequency is reduced to (wp2 /0 z) 1+@ 9/7002)2]—1.
which implies a reduced growth rate for the instability in the relativistic regime.
The condition for stability, that the beam have only one free surface, is the same

in both the relativistic and non-relativistic regimes.

6R.H. Levy, Phys. Fluids 8, 1288 (1965).




7.1.5 Switching an Unneutralized Electron Beam in a Torus

Any analysis of switching an unneutralized electron beam in a torus must assume
linear stability of the beam. Without linear stability the energy storage would not be
possible since nearly any pure electron mode, if unstable, would grow at a rate com-
parable to @pe = (4m ne2/-yom)1/2. At n = 1012 ¢m=3 and 7 =5, we have “—'pe_l £
4 x 10'11 sec. Any beam instability would e-fold in amplitude in <1 ns at this density
and energy. The rapid growth rate for instabilities suggests one approach to switching,
viz. changing some parameter to trigger an instability.

Given linear stability, the only instabilities possible are those which result
from a large-amplitude perturbation, one comparable in magnitude to the equilibrium
value for some quantity. For example, by inserting a rod into the torus, we can
produce a kink perturbation with initial amplitude comparable to the beam radius.
Alternatively, Rosenbluth has suggested that we switch the torus by injecting a fast
plasmoid into the beam, thereby rapidly charge neutralizing a local region, i.e.,

6Er ~Er’ which results in an unstable neutral plasma mode.

A separate line of reasoning takes advantage of the linear stability of the beam.
Such approaches as dropping a pellet into the beam or magnetically moving the beam
into a metal target have been considered and rely on beam stability during switching.
The basic objective in all switching schemes is to charge neutralize and stop
the beam in a time of order an electron transit time ~27R/c. The external circuitry
has time constants which are long compared with the switching time, and therefore
the field energy will be dissipated in the target material heating it and producing x-rays

by Bremsstrahlung.

Plasma Switch (Rosenbluth)

18 1
Fast theta-pinch hydrogen plasma guns can be made to produce 3 x 10 - 10 .

electron-ion pairs. Typically, about 1% of these particles are emitted in a fast

7
plasmoid, with velocities of 10 - 108 cm/sec (plasmoid energy <100 J). Since the
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total number of electrons in the beam is ~1017 in a megajoule system (and ~ 101(; in
the STP), the fast plasmoid will charge neutralize a local region of the beam in
~10 ns.

A neutral plasma confined in a torus cannot carry current in excess of the
Kruskal-Shafranov limit. A fully neutralized electrostatic torus would therefore be
grossly unstable. With the disappearance of the electrostatic field in a local region,
the BB field will be unopposed and cause the beam to pinch. This unstable pinch
motion can stop a high v/y beam. Targets on the wall can be used for conversion to
x-rays, or alternatively, the plasma itself, which is strongly heated during the beam

pinching, can become the x~ray source.

"Rod-Plunger'' Switch

By making a perturbation in the wall geometry, we affect the boundary conditions
which determine the equilibrium fields. It is possible to actually destroy the equilibrium
locally in this manner and force a specific perturbation (i.e. a kink) to grow. We
imagine a cylindrical rod which is inserted through the torus wall and pushed toward

the minor axis. Initially, the rod simply compresses all the fields, Er’ B BY about

equally. When the rod has been inserted to a depth comparable to its diameter,
however, the magnetic field lines will begin to slip around the sides of the rod, while
the electric field lines must continue to terminate on the rod. Further insertion of
the rod, therefore, results in an enhancement in Er' but little further compression
of BG or Bz'

Increasing Er causes the azimuthal drift speed v6 to increase as electrons
pass near the rod, forcing a kink-shaped perturbation to form. Let 6Er be the change
in }:Ir due to the rod. Then the azimuthal speed is
E GEr

v
-6 r
c

= + —

2 B
(o]

vy B z




and we see that 6Er ~Er/'yo2 suffices to make a large-amplitude perturbation in v

As 70"6 /c approaches unity, the azimuthal drift motion becomes energetically )
impossible and the electrons will be freely accelerated toward the rod.

The switching process can be triggered by biasing the rod positive as ”o"e /c
nears unity. A bias voltage ~ 10-100 kV can be rapidly applied, and results in the
formation of a large-amplitude perturbation (amplitude ~beam radius) in a time < 1 ns.
The large kink perturbation then grows very rapidly, with a characteristic growth
time <1 ns, and drives the beam into the rod which acts as a target.

This mechanism does not rely on rapid insertion of the rod, but only on fast

onset of the instability. The large Br and Be fields of the beam itself are utilized in

switching, the bias voltage acting only as a trigger.

Pellet Switch

Perhaps the simplest approach to switching consists of dropping a metal pellet
into the beam to charge neutralize and stop the beam. The pellet then heats up and
emits x rays. The main problem is getting the pellet into the beam. By charging
the pellet positive, the large potential between the wall and beam surface (~ 107 - 108\')

6
can be used as an accelerator. Pellet velocities up to ~ 10 . cm/sec are attainable in

-8
this way. While the total beam mass (~10 ~ g) is very small, the B and Bz fields

prevent the beam electrons from being drawn into the pellet. Clearlg a technique for
moving the beam into the pellet is required.

A means of shifting the beam equilibrium through the application of a vertical
magnetic field appears feasible. This approach is discussed in detail in the following
section. A vertical magnetic field of ~300 G suffices to displace the beam a distance

comparable to its diameter in ~10 ns. A description of a technique for producing such

a field in ~ 10 ns is also presented.

Switching By Vertical Magnetic Field

A vertical magnetic field is generally employed to adjust the equilibrium

position in a Tokamak. We consider this possibility for a high v /v electron beam in
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a torus. The objective is to displace the electron beam a distance of the order of
the diameter of the beam in a time of the order of 10 ns. We conclude that this is
feasible with state-of-the-art electrical engineering.

We begin with the orbit equations for relativistic electrons in a large aspect

; (1
ratio torus

e L L

9
X : X
A :
== + =] =- -BB ) =+=v B -
mx& R) ei(Er Be)r cvybz c\zu.\‘f

.

Ve - y_1
myo dt e{(hr BBG) r . C Vsz}

\’Z 155 _11; cosf]

<
I

(x,v,2) are local cartesian coordinates as illustrated in Figure 7-26, (r, 6) are local
polar coordinates corresponding to (x,y). These equations are identical to Eq. (11)
of reference 1 except for the addition of an external magnetic field By which results

in the additional term(e/c)vZBy in the x-component of the orbit equation. Since

X
—e(Er - 3}36) = m-yox

2 2
where wp = 41 ne /-yom is the beam plasma frequency, the toroidal term my \'72/ R

can be removed by the transformation

(1)N. Rostoker, Particle Accelerators 5, 93 (1973).
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Figure 7-26.

Local Coordinates for a Torus.
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This means that the beam is not centered in the torus but shifted to the position B a
2 2
distance 2‘y02 VZ /pr from the center. Similarly, it is evident that the effect of

the vertical field By is to shift the center of the beam from B to B' by a displacement

2 2*/A2 ;
AX——E‘v B v i
€ 1z
y (.cz myo
P
2 Vz Q’
:_z.y — —)-
0 \w w
p P

1 -3
where Qy = eBy/-yo mec. For example, if Yy~ 2115 ni =10 8 cm  and By = 300G,
Ax =4.4 cm. For the STP, we have n= 4 x 1011 ¢m-3 and p 5, which yields
By =195 G for AXx =4 cm.

The x and y components of the orbit equations can be written as follows:

Mt

2 3
=0 x-ﬂzy + Vzny (t)

2 :
y=Qy+sz

where 9
9 w eBZ eB (t)
0 = —£ sl = i Q () =
2702 z gy me y ¥,

In terms of the complex variable { = x + iy these equations can be combine

B ione e
C‘lQZC‘n (—\IQ\ (t)
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Assume that ll‘_(l) 0, t-0; Hv(t) “V' L -0, then the solution is

. A% n
¥ £ . DN .k R
T = —°-—“-/2 Y () iQ'/‘ ' n'_’. .~ k
Q
; vVQ ;
3 ;i 0) ® /.2 clﬂLt :
Qx Q :

L0), £(0) are initial values for { (t) and ws = Qz/nz is the slow precession frequency.
It has been assumed that ws << QZ or 02/0422 <<1. The orbital motion described by
equation is illustrated in Figure 7-27.

The term el€2z! describes the fast precession at the gyrofrequency of the large
toroidal field. The gyroradius of the precession is quite small. It is of order
(velocity/nz) <c/Qz. The term exp i wst describes a slow precession about a center
that is shifted by Vzny/nz compared to the case Qy = 0. This agrees with our
expression for Ax above. However, it is now clear that the timescale for establish-
ing this deflection is determined by the precession frequency wes the speed with which

the beam moves from B to B' in Figure 7- 26,

&e VZQ Qz S.Y
At E 2 /—Zavz Qz =Vz(By/Bz) y t

0 0

We assume that By =300 G, BZ = 20 kG so that Ax/At = 4.5 x 108 cm/sec and the

time for one beam to displace from B to B' is

At =10 ns

which is also the result for STP where Bz = 15 kG.
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Figure 7-27. Orbital Motion Produced by a Vertical Field By'




We have assumed that By is turned on instantaneously. In order to displace
the beam in about 10 ns, it will be necessary to increase By from zero to 300 G in
about this time.
We assume a set of toroidal windings to produce By as illustrated in Figure 7-28.
In order to estimate the inductance of the coil we calculate the inductance/unit length
neglecting the toroidal curvature. For w >>b
w

£ = 8log (S) nanohenries/centimeter .

The total inductance is
L = 27R¢ =16qR log (w/b) nH
where R is the major radius of the torus. For R=50cm, w =30 cm, b=1.5 cm,

L = 7500 nH.

The magnetic field in the vicinity of the electron beam will be

B =
y

S S

- |
w

For By =300 G, I =11.25 kA, while in the STP, I = 7.3 kA will be required.
We assume that the coil will be driven by a high voltage pulse line. In order
to reduce the effective inductance the coil would be split into N coils as illustrated
in Figure 7-29. Each of the coils is to be connected in parallel and driven by the pulse
line. The pulse line must supply a current NI and the magnetic energy is

2

1 L
W—2L1= NZ(NI).

(SR
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Figure 7-28. Coils for Vertical Magnetic Field.
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Figure 7-29. Split Coil and Coaxial Pulse Line.
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Therefore the load inductance for the pulse line is

Ly = LN
The effective inductance for the pulse line is LE = 7500/64 = 117 nH assuming N = 8
as illustrated in Figure 7-29. The equivalent circuit for the pulse line is illustrated
in Figure 7-30. The coils can be represented as lumped parameter circuits rather
than transmission lines since the transit time for electromagnetic waves in each
coil is (27R/8c) =1.2 ns. From analysis of the pulse line illustrated in Figure 7-30,

the current in the inductive load would be

i : -(t-t,) ’ -(t-t,))
?
e 1-;——1—e L _2 o =
TES 172 17T
where
L
T =_-LS T = £
+Z B
Loty g = e

Time is measured from when the switch S is fired; t2 is the transit time for line Z 9°

This equation is valid for 0 <t - t2 <2t1, 2t2. Assuming LE >> Ls and 21222,1-2 >>1

and the equation simplifies to

\ -t-t)
y==2|1-e —=|,

Zy To
The risetime of the current is LE/Z 2 and since this must be about 10 ns, Z 9 =120
The current rises to VO/Z 9 which must be 8 x 11.25 = 90 kA so that the pulse line
voltage is about 1 MV, In STP a pulse line voltage of 700 kV would be required.
Clearly, this is a standard state-of-the-art pulse line. We assume that an oil

dielectric would be employed and the radius of the outer cylinder would be about the

100




i
Vv 21 5 :
e, . TR : 1
’ E v
|

- 3

I; $ MARX

$ GENERATOR i

Figure 7-30. Equivalent Circuit of Pulse Line.
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same as the torus, i.e. Ro =50 cm, since Z = 60 log Ro/Ri the inside radius would f
be Ri =41 cm to give an impedance of 12Q). The energy stored in the magnetic field '
of the coil is

2

-9
LI" == x 7500 x 10 x (11.25 x 103)2 =474 Joules .

DO =
0 |

2
The energy stored in the pulse line is (1/2) CV™ /unit length where

I /CIIl .
0 g / .

9% 1

-5
C =0.28 x 10 ~ yF/cm and the energy stored is 1.4 J/cm. The pulse line should
be at least 20 ns in electrical length which involves a physical length of 6 m and a

stored energy of 840 J.

It is possible to place the By-coil inside the toroidal metal wall. However, it
is much easier to place it outside as indicated in Figure 7-28. In this case, the metal ’

wall must have a poloidal slot or the magnetic field will be shielded and will not
/
penetrate. For penetration of the electron beam the inductive skin depth is yg /2 (c/wp) =

17.5 cm so that this is not a problem for large p A

7.2 STP EXPERIMENTAL PROGRAM

7.2.1 Introduction

During the past fiscal year construction was completed on the STP toroidal
energy storage experiment at Maxwell Laboratories, Inc., and experiments were ini-
tiated to study the injection and storage of unneutralized electron columns and beams in
toroidal geometry. During the course of the year, some modifications were made to
the machine to correct magnetic field errors resulting from nonuniformities in the
stainless steel vacuum vessel. In addition, during the latter part of the year vertical
magnetic field windings were added to provide the vertical magnetic field necessary for




controlling the equilibrium position of the beam. A plan view of the machine as

modified is shown in Figure 7-31, and a cross sectional drawing is shown in Figure
7-32. The vertical magnetic field windings are driven by a bank of marine batteries
which is switched by an SCR circuit.

During the course of the year, a 40 kV thermionic electron injector was de-
veloped which injects ~100 pcoulombs of charge into the machine. This injected
charge corresponds to an electron density of ~1010 cm_3 and creates a potential well

of ~300 kV. This amount of charge is sufficient to provide the Er X B, particle rota-

tional transform necessary for confining accelerated particles. Effortds near the end
of the year have focused on acceleration of the injected charge into a relativistic beam.
While these efforts have not yet been successful, we believe we have identified the
problem area involved and have outlined an experimental program which will lead to

significant relativistic beam currents.

7.2.2 Diagnostics

Two different kinds of probes have been used to measure the charge injected
into the STP machine. Figure 7-33 shows one of these types of probes. This probe
is called a wall probe and consists of a flat circular stainless steel disk mounted
flush with the stainless steel vacuum vessel wall but electrically insulated from the
vacuum wall. The stainless steel disk is connected to a 50 cable and 50} termina-
tion through a high vacuum electrical feedthrough. This probe provides two separate
measurements of the injected charge. First, the probe measures the charge induced
on the wall of the torus by the accumulation of the electron column inside the machine.
Since the probe is connected to ground through 500, the induced charge on the disk
produces a voltage across the termination when it flows to ground. Integrating the
voltage appearing across the 50Q termination gives a measure of the total charge in-
jected into the torus.
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Figure 7-33. Cross-Sectional Drawing of a Wall Probe.
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In addition, the wall probes couple capacitively to the diocotron surface flute

modes which can exist in an unneutralized electron column. The frequency of the

diocotron mode is given by

As a result, the electron density may be determined by measuring the diocotron fre-

quency if the magnetic field is known. Specifically,

n = 6.9 x 108de

2
where the diocotron frequency f d is in Hz and the magnetic field B is in Webers/m .
For most of the experiments described, wall probes were placed at two different
toroidal locations.

Another probe used is shown in Figure 7-34. This probe consists of a glass

tube with a . 020" diameter tungsten wire protruding from the end. The probe which

is movable radially through a vacuum fitting is used to measure the depth and profile
of the potential well created by the non-neutral charge collection. This provides a
measure of the density in the electron column. The probe is connected through a

10 MO to 10 kO voltage divider to an operational amplifier which drives a terminated
50 cable to an oscilloscope. For most of the measurements described in this report,

the potential probe was located toroidally 180° from the injection sector.

Assuming that the electron density distribution in the electron column is

uniform, the density is related to the potential well depth by

\Y =neb2 5
0

4¢
(o]
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Figure 7-34. Cross-Sectional Drawing of a Potential Probe.




where V0 is the potential at the center of the column and b is the beam radius. Taking

b = 8 cm (the vacuum wall radius) gives
4
n = 3.45 x 10 V .
o]

Thus, the potential probe provides a third method of measuring the electron density
inside the column.

7.2.3 Low Voltage Injector Studies

The first injector assembly used to inject charge into the STP machine is shown

in Figure 7-35. This injector consisted of 12 thoriated, carburized, .024" diameter,

4" long filament wires located in one quadrant of the minor circuralerence. Molyben-

dum plates are placed parallel to the filament wires and the filament bias voltage is

applied across the plates. This results in an electric field which is perpendicular to

the toroidal magnetic field, causing the electrons to acquire an ExB drift velocity to-

ward the minor axis.
Figure 7-36 shows oscilloscope traces of machine operation using this kind of

injector. For this shot the magnetic field had a risetime of 2 msec, reaching a maxi-

mum (at the minor axis) of 4.7 kG. An injector bias voltage of 4.0 kV was used, and

injection was begun after 1.8 msec. The bias voltage was crowbarred after 200 psec

terminating the injection phase. The lower trace in the upper right hand photograph

shows the potential well depth time history at a sensitivity of 10.7 kV/div. As can be

seen, the potential well depth builds to a maximum during injection and then begins to

decay after the injection process is terminated. The upper trace in the lower left

photograph shows the wall probe signal gives the injected charge (~8 pcoulombs for

this shot) which is in good agreement with the potential well depth measurement if an

approximately uniform charge distribution is assumed.
The bottom trace in the lower right photograph shows the diocotron oscilla~

tions on a fast time sweep (1 usec/division). These oscillations occur late in time

when the potential probe is located near the center of the electron column. (This
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indicates that the potential probe perturbs the electron column sufficiently to cause
the diocotron oscillations to begin). Measurements of the electron density from the
diocotron frequency give values of electron density which are somewhat lower than
the densities obtained from the probe measurements. However, this is probably
reasonable since the diocotron waves are surface modes and the electron density is
undoubtedly somewhat lower near the edge of the electron column.

In Figure 7-37 we show probe signals for a case where the magnetic field rise ;
time was 3.5 msec, the peak magnetic field was 5.8 kG, and the bias voltage was :
5.0 kV. The potential well depth in this case was ~ 30 kV. The lower two traces in i
Figure 7-37 show diocotron wave oscillations taken with two different wall probes |
located approximately 90° apart toroidally around the machine. The diocotron modes
should have zero phase shift parallel to the magnetic field. As can be seen, the two
wall probe signals are in phase. These measurements thus provide verification that |
the observed waves are indeed the diocotron modes.

! In Figure 7-38 we show the variation of potential well depth with the injector :

bias voltage for the low voltage injector. As can be seen, the well depth (and hence
the charge) was found to scale linearly with the bias voltage. This scaling indicates
that the injected charge can be significantly increased by increasing the bias voltage.
Advantage was taken of this scaling later in the year to obtain an increase of ~10 fold

in the injected charge and resulting potential well depth.

The radial potential profile for the low voltage linear injector is shown in
Figure 7-39. The profile can be reasonably well fit by a parabolic curve over much
of the minor radius. This is consistent with an electron column density which is ;
approximately uniform over the column diameter.

Figure 7-40 shows the variation in potential well depth as a function of the

NS RSN, SR YR

time delay between the start of the magnetic field and the start of the injection phase
As can be seen, the peak potential well depth attained is maximum late in time for both
the 3.5 and 2 msec magnetic field rise times. More recent results with another in-

jector of only slightly different geometry do not show this same variation, however.
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Figure 7-38.

Potential Well Depth as a Function of Injector Bias Voltage for
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the Low Voltage, Linear Injector.
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Figure 7-39. Radial Potential Profile for the Low Voltage,
Linear Injector.
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for the Low Voltage, Linear Injector.
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This indicates that this behavior may be due to magnetic field errors (due to mag-

netic field penetration through the stainless vacuum liner) which were accentuated
by this injector geometry.

The variation of the potential well depth with the peak magnetic field at the
minor axis is shown in Figure 7-41 for both early and late time injection. The poten-
tial well depth was observed to be only a weak function of the magnetic field for this
injector.

In order to study the containment time of the electron column, provisions
have been made to crowbar the injection voltage after a time Atcb which can be set
by an external time delay control. After the injection voltage has been removed, the
electron density begins to decay, and this decay has been observed for a number of
different conditions. For example, Figure 7-42 shows the variation of the potential
decay as a function of the peak magnetic field strength. Each curve in Figure 7-42
has been normalized to its own peak value so that the decay rates can be more easily
compared. As can be seen, a systematic improvement in containment time occurs
as the peak magnetic field is increased. Similarly, Figure 7-43 shows the decay
rate for several different injection times. This figure shows a systematic improve-
ment in containment time as the injection window is moved to later times. However,
since the magnetic field during the decay time also increases as the injection window
is moved to later times, it is interesting to compare the data from Figures 7-42 and
7-43 on a single plot in terms of magnetic field. This is done in Figure 7-44 by
plotting the decay time (time for the potential to decay to 1/e times the peak value)
against the magnetic field at the start of injection. The upper curve is obtained from
the data of Figure 7-43 where the time at which injection starts is varied, and the
lower curve is obtained from the data of Figure 7-42 where the peak magnetic field
is varied. A primary difference between the two curves is that upper curve was taken
with a bias voltage of 4.0 kV while the lower curve was taken with a bias voltage of
5.0 kV. However, the two curves have very nearly the same slope, and should es-
sentially lay on top of one another if they had both been taken at the same bias voltage.

There is a departure from this trend at very early injection times on the upper curve.
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Figure 7-41. Variation of Potential Well Depth with Magnetic Field
Strength for the Low Voltage, Linear Injector.
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However, this is probably at least partially due to the fact that the magnetic field is
changing rapidly early in time so that the average magnetic field during the decay
period is somewhat higher than the plotted points. The data of Figure 7-44 is inter-
esting since it shows an approximately linear scaling of containment time with mag-
netic field. The containment time would be expected to scale with 32 unless magnetic
field errors or anomalous mechanisms are dominating the loss processes. It is,
therefore, likely that the magnetic field errors play an important part in the electron
loss processes for this injector and vacuum vessel geometry.

Figure 7-45 shows the variation of the potential decay with the width of the
injection window. The decay rate is found to improve with shorter injection windows.
This is probably due to the fact that some neutral gas is liberated during injection by
electron bombardment of the injector and nearby vacuum wall. Reducing the width
of the injection window reduces the amount of gas liberated and hence the ion com-
ponent in the electron column, resulting in longer containment time.

In Figure 7-46 the effect which varying the pressure has on the decay rate are

shown. This data was obtained by admitting small amounts of methane gas into the chamber

prior to firing the machine. As can be seen, a systematic improvement in the con-
tainment time is obtained as the pressure is varied from 1 x 10_6 Torr down to
8 x 10-9 Torr. Figure 7-47 shows the effects of pressure variation on the peak poten-
tial well depths achieved. The results show a marked decrease in the potential well
depth at higher pressures.

Some preliminary beam acceleration experiments were performed with the
low voltage linear injector to investigate the physics of the acceleration mechanism.
Figure 7-48 shows oscilloscope traces of the beam acceleration mode using the low
voltage linear injector. The upper trace shows the magnetic field, the second trace
shows the accelerating electric field, and the lower trace shows the beam current

measured with a Rogowski loop on a sweep speed of 20 ysec/division. The injection

phase was started 2.2 msec after the start of the magnetic field. The injection window
width was ~100 ysec, and the acceleration phase was begun at 2300 ysec which corres-

ponds to the end of the injection window. The beam current pulse width of ~30 pysec
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is consistent with the time to accelerate the electrons from rest to y ~1.05 to 1. 06.
At this value of y the electron drift to the wall due to the toroidal magnetic field
gradient is more rapid than the precession around the minor axis which cancels the
drift effects. As a result, the electrons are lost to the wall. That is, more charge
is required to provide the rotational transform needed for higher y. This point is
further illustrated in Figure 7-49 which shows the theoretical and measured current

pulse width as a function of the accelerating electric field E ,. As can be seen, the

current pulse widths are consistent with y ~1.05 to 1, 06. g‘his agrees with theoreti-
cal predictions of the maximum y which can be supported by ~12 ycoulomb charge.
The accelerated beam appears to be stable and well behaved for the duration of the 20
to 30 ysec pulse width. However, the peak amplitude of the current pulse is consider-
ably lower than would be expected. For example, a total of 12 ycoulombs of charge ac-
celerated to ¥ ~ 1. 05 corresponds to a current of ~350 amps, and only ~50 amps was
observed. This indicates that only part of the charge is being accelerated. This could
be due to magnetic field inhomogenieties resulting in the trapping of the charge in local
mirrors.

In summary, using the low voltage, linear injector, electron densities of
~109 cm-3 were achieved. This corresponds to an injected charge of ~12 ycoulombs
and a potential well depth of ~33 kV. Charge containment times (time to 1 /e) of sev-
eral hundred psec were observed, and preliminary beam acceleration experiments
showed current pulse widths in agreement with theory, but beam currents which were
anomalously low. The injected charge was found to scale linearly with the injector
bias voltage for the linear injector. Based on these results, modifications were made
to the toroidal vacuum vessel to improve the magnetic field uniformity, and at the same

time modifications were incorporated to allow for the use of higher voltage injectors

in order to increase the injected charge.

7.2.4 Vacuum Vessel Modifications

Figure 7-50 shows a comparison of the STP vacuum vessel configuration before

and after modification. For clarity, some of the ports not involved in the modification

have been left off of Figure 7-50. The modification consisted of removing the ceramic
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Figure 7=50. Sketch of STP Vacuum Vessel Features Involved in Modification.
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sector, the bellows, the filament sector, and the three aluminum "O'" ring flanges.
The ceramic sector, the bellows and the filament sector were replaced with smooth
toroidal sections. In place of the three aluminum "O" ring flanges, two flanges were
added which provide electrical insulation around the toroidal direction and in addition
provide a much more uniform cross section than the original flanges. A sketch of
these flanges is shown in Figure 7-51. This flange uses a viton '"O" ring and . 035
inch thick G-10 spacers to provide the electrical insulation provided by the ceramic
sector in the original configuration. The flanges are held together by two rotatable
G-10 rings which press against six 0.15 inch high, 3/4 inch wide lugs. The two rings
are held together by 3/8 inch diameter permali bolts. These flanges result in almost
no effective increase in the amount of metal at the flange location compared to the
torus wall itself and, as a result, should lead to no magnetic field perturbations.

The use of viton "O" rings has not significantly degraded the operating vacuum which
is typically in the low 10_9 Torr range. In addition to these modifications, two 4 inch
OD ports were added as shown in Figure 7-50b. These ports are designed to give
ample clearance for high voltage injectors of the type which will be described in the ’

following section. 7

7.2.5 High Voltage Injector Development

By experimenting with a number of different geometries, an injector was de-
veloped which injects more than 100 ucoulombs of charge into the STP machine. Some
of the injector geometries studied are shown in Figure 7-52, and the results of charge
injection measurements are given in Figure 7-53. In addition, the effects of dimen-

sional changes were investigated for some of the injector geometries shown in

Figure 7-52. As can be seen from Figure 7-53, the configuration of Figure 7-52(d)
gave the largest injected charge.

On the basis of these tests, a high voltage injector was built using the geometry
on Figure 7-52(d). A photograph of this device is shown in Figure 7-564, and a sketch
is shown in Figure 7-55. This device uses a four conductor high voltage vacuum feed
through to bring the injector voltages and currents into the machine. These feed
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(a) PARALLEL PLATES (b) PARALLEL PLATES WITH WIRE
MESH IN FRONT OF FILAMENT

PLATES WIRE
ﬁ
= 4
(c) PARALLEL PLATES WITH (d) ANGLE PLATES
WIRE MESH ON FRONT
AND SIDES

Figure 7-52. Side Views of Various Injector Geometries Used in
Charge Injection Studies.




T . ywrryw—ty

INJECTOR

GEOMETRY
20 SHOWN IN  —
(FIGURE 7-52a)
INJECTOR GEOMETRY  x
SHOWN IN |
(FIGURE 7-52d) ” |
P |
7
7
/.

15L— _ s

POTENTIAL
WELL INJECTOR GEOMETRY
DEPTH SHOWN (N
(kV) y x (FIGURE 752b)

10 }—

INJECTOR GEOMETRY
x SHOWN IN
FIGURE (7-52¢ )

1 - | 1 |
1 2 3 4 5 6

INJECTOR BIAS VOLTAGE
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Figure 7-54. Photograph of the STP High Voltage Injector.
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throughs are mounted on a 6" OD vacuum flange and the entire assembly is designed
to fit inside a 4 inch OD port. This large port size allows large distances between
the high voltage injector components and the torus walls which are at ground potential.
The feed through flange is mounted on a bellows which is mounted on a vacuum flange
at the machine. The bellows allows the injector position in the magnetic field to be
changed without disturbing the vacuum. The injector itself consists of a tungsten
dispenser cathode and two plates. The dispenser cathode is a seven turn, 1/4 inch
OD helical filament whose axis is parallel to the toroidal minor axis. The injector
voltage is applied between the plates and the dispenser cathode giving a configuration
where the electric field due to the injector voltage is perpendicular to the toroidal

magnetic field.

7.2.6 High Voltage Injector Results

Figure 7-56 shows potential probe measurements of the potential well depth
due to charge injected with the high voltage injector. This data shows that the poten-
tial well depth and hence the injected charge increases linearly with injector bias volt-
age. Potential wells of ~300 kV were achieved with ~35 kV injector voltages. The
voltage in the center of the machine could not be measured directly above ~100 kV be-
cause the potential probes tended to flash over between 80 and 100 kV. However, the
voltage at the center of the machine can be extrapolated from measurements made near
the wall. In order to validate this technique a number of radial profiles were taken at
various lower injector voltages to ensure that the profile did not change appreciably
as the bias voltage changed. A typical radial potential profile taken with the high volt-
age injector is shown in Figure 7-57.

The charge injected with the high voltage injector is plotted in Figure 7-58 as
a function of the injector bias voltage. As can be seen, in excess of 100 ycoulombs
was obtained with ~35 kV on the injector. In some cases the charge deduced from
diocotron frequency measurements was somewhat lower than that taken from potential
probe measurements. However, the diocotron frequency measurements were made

late in time since the diocotron oscillations generally did not start until several hundred
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@ microseconds after the end of the injection phase. As a result, it was necessary to
extrapolate the density measured at this time back to the peak density using the poten-
tial probe decay rate. This limits the accuracy of the diocotron measurements. Con-
sidering this, the agreement obtained between the two measurements is reasonable.

In addition to the measurements described above, measurements were also
made of the microwave radiation from the machine. These were made using WR-90 |
x-band waveguide (~1'" x 0.5') which has a lowest order mode (TEIO) pass band of |
8.2 to 12.4 GHz. Figure 7-59 shows the microwave circuit used. The waveguide ex-
tended from a glass vacuum view port mounted on the torus to the screen room some
50 feet away. A variable attenuator, ferrite isolator, and diode detector were located
inside the screen room.

Figure 7-60 shows oscilloscope traces of detected microwave signals obtained
from the experiment for two different injected charge levels. The upper photograph 4
shows the microwave signal for a case where the injected charge was ~42 pcoulombs
while the lower photograph corresponds to ~81 pycoulombs of injected charge. As can
be seen from the photographs, both the amplitude and shape of the microwave signal
changes as the electron density changes. In both cases, the microwave emission is
strong at the beginning of injection. However, at the lower charge level the emission
dies away rather rapidly after the early peak, while at higher injected charge levels
the emission has a longer duration. Since the emission is strongest in both cases
early in time when the electron density has not reached its peak, we assume the early

peak is due to a collective radiation mechanism driven by the injection process. The

uwl

emission occuring later in time is probably due to ordinary incoherent cyclotron radi-
ation from the electrons in the toroidal magnetic field. The electron density at the
higher charge levels is probably sufficient to give measurable incoherent cyclotron
emission while at the lower densities the radiated power through the small vacuum

port is probably too small to be detected.

The frequency of the radiated microwave emission should depend on the strength

of the magnetic field if the emission occurs at the cyclotron frequency. The electron
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Figure 7-60. Oscilloscope Traces of Radiated Microwave Power From the STP
Machine. The upper trace in each photograph is the microwave
signal, and the lower trace in each case is a potential probe
signal. All traces are 50 ysec/div. The upper microwave signal
sensitivity is 2 mv/div and the lower is 5 mv/div. The upper
photograph corresponds to ~42 yCoulombs of injected change while
the lower corresponds to ~81 yCoulombs.




cyclotron frequency is given by

This corresponds to ~2.8 GHz per kilogauss of magnetic field. Thus, by changing

the toroidal magnetic field in the experiment it is possible to vary the eyclotron fre-
quency through the x-band range. Figure 7-61 shows a plot of the detected microwave
signal as a function of the cyclotron frequency calculated for an electron at the minor
axis of the machine as the magnetic field is varied. The magnetic field was varied
both by changing the peak magnetic field and by changing the injection time, giving
nearly identical results. The fact that the detected microwave power depends on the

magnetic field indicates that the emission is probably cyclotron radiation.

7.2.7 Charge Acceleration Studies

The last few weeks of this year's work were devoted to charge acceleration
experiments. These efforts indicated some unanticipated problems in the charge
acceleration phase. Although ample charge was available to provide the Er and E@
particle rotational transform to cancel the toroidal drift, and the vertical magnetic
field was available for beam positioning, no large un-neutralized beam curreunis were
established. Currents initially thought to be electron beam currents were later found
to be flowing in the wall of the vacuum vessel, by-passing one of the insulating vacuum
flanges which was slightly misaligned. In some cases, large currents were observed
late in time due to ionization of wall material and background gas to form a plasma i
allowing a tokamak discharge. Figure 7-62 shows oscilloscope traces of a tokamak
discharge. As can be seen, a discharge current of ~ 10 kA peak occurred late in ',
time (~2msec after injection). The x-rays generated near the peak of the current
pulse were found to penetrate up to ~ 0. 25 inches of lead, indicating the presence
of electrons with up to ~200 keV energy in the discharge. This implies that these

electrons were contained for several thousand passes since the transformer electric

field was ~ 0.2 volts/cm which corresponds to an energy increase of ~ 64 eV per
transit for the electrons. The long delay before the onset of the tokamak discharge i
is probably the result of a slow buildup of plasma density by ionization of background
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E-194

Figure 7-62. Oscilloscope Traces of a Late Time Tokamak Discharge in
the STP Machine. Upper trace: Toroidal current, 14 kA /div.
Lower trace: Scintillator - photomultiplier x-ray signal.
Horizontal sensitivity: 500 ysec/div. The oscilloscope was
triggered at injection time. The transformer electric field
was ~0.2 volts/cm.
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gas and wall material. Normally, one of the insulating torus flanges (see Figure 7-51)
was short circuited by ground connections between the two halves of the torus, leaving
only one insulating gap in the vacuum vessel. Under these circumstances the tokamak
discharges were usually observed late in time. When the ground was removed from
half of the machine, thus removing the shorting path around one of the flanges, no toka-
mak discharge occurred. This indicates that one of the flanges drew some leakage
current generating enough plasma for the tokamak discharge. This leakage current
was observed to begin early in time and persist until the onset of the tokamak mode.
The amplitude of this leakage current was a few hundred amps.

From the results of these experiments we conclude that the machine operates

as expected in the presence of a plasma, generating a tokamak discharge, but does

not generate unneutralized electron beam currents even when a large amount of charge
is present. (The charge decay time is not affected by the presence of the toroidal
electric field.) This suggests that the difficulties are connected with the orbits of the
electrons in the unneutralized column. These orbits involve principally motion around
the toroidal minor axis (due to Ex E@ drift) so that the particles can be expected to have
much greater energy perpendicular to the magnetic field than parallel to the tield. Such
particles would be susceptible to being trapped in small ripples in the magnetic field
caused by the discrete nature of the magnetic field coils. Most of the electrons trapped
in such wells would not feel the effects of the toroidal electric field since the electric
field would result only in a small current even though a large amount of charge is pre-
sent for several hundred microseconds after injection. This is precisely the behavior
that is observed. The currents observed are ~50 amps.

This situation can be corrected by injecting electrons with significant energy
parallel to the magnetic field that they will not be trapped in magnetic wells. Such
electrons would then be further accelerated by the transformer each time they passed
under the insulating vacuum flanges. This injection process could be best accomplished
with a relativistic injector. Figure 7-63 shows a drawing of a relativistic electron in-
jector. Basically the device would consist of a diode driven by a marx generator. The
diode is connected to the marx by a vacuum coaxial line. The insulator and marx

146




R

‘QUIYOBIN d LS 9Y} 10J INOABT XBO)) WNNOBA PUEB I0jB[NSUu] Jo MOIA dOJ ‘g9-, @andrg

dINNd O1 MNVLI O

XHVYW
13SS3A : e
WNNIJVA d1S L0 NEE /

147

s X Ll | DS

\
ao ‘NI ¥ §
9331S SS3INIVLS

SSIINIVLS vas

on.v.z_ L _Ssv19 ﬁ IVLIW

ao Nt z/ve yoivinsni  SSV19

‘NI ¥ ‘NI 8 NI 6 —— 311901
rr|||||“||




generator would be located in an oil tank, and a rough vacuum would be used as a
buffer region between the oil seal and the high vacuum region. The marx generator,
oil tank, and insulator for this injector are part of an existing small generator which
can be readily adapted to relativistic injection. The marx would be equipped with a
crowbar so that the voltage could be removed from the diode before gap closure
occurred.

Computer calculations indicate that this scheme could lead to a large increase
in the charge level inside the machine. A similar injection scheme has been used by
researchers in J a.pa.n1 to produce an unneutralized electron beam in a tokamak-like
device. With the presence of a previously injected thermionic core of charge the in-
jection and trapping efficiency in the STP machine should be good. Thus, this approach

should lead to both higher charge levels and significant beam currents.

X A. Mohri, M. Masuzake, T. Tsuzuke, and K. Ikuta. 'Formation of a Non-Neutral
Relativistic Electron Beam Ring in a Toroidal Magnetic Field, Phys. Rev. Letters,
34, 574 (1975).
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